4]

A Note on Disjoint Parallelism

Krzysztof R. Apt
Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam
The Netherlands
and
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188
U.S.A.

Ernst-Riidiger Olderog
Department of Computer Science
Christian-Albrechts University
2300 Kiel 1, Olshausenstrasse 40
West Germany

Abstract: We prove determinism of disjoint parallel programs by applying
simple results on abstract reduction systems.

In this note we consider disjoint parallel programs as defined in Hoare [1972].
We assume from the reader the knowledge of while-programs (see e.g. De
Bakker [1980]) and their semantics defined by means of transitions (see Hennessy
and Plotkin [1979]). Two while-programs S; and S, are called disjoint if none
of them can change the variables accessed by the other one, i.e. if

change(S)) Nvar(Sz) = var(S1) N change(Ss2) = 9,

where change(S) is the set of variables of S which can be modified by it, i.e. to
which a value is assigned within § by means of an assignment. Note that disjoint
programs are allowed to read the same variables. For example, the programs

z:=zandy:=2z2

are disjoint because change(z := z) = {z}, var(y := z) = {y, 2} and var(z :=
2) = {z,z},change(y := 2) = {y}.

42

On the other hand the programs z := z and y := z are not disjoint because
z € change(z := z) Nvar(y :=).

Disjoint parallel programs are generated by the same clauses as those defining
while-programs together with the following clause for parallel composition:

S = [S1].../|Sn]

where for n > 1, 81,..., 5, are pairwise disjoint while-programs. Thus we do
not allow nested parallelism, but we allow parallelism to occur within sequential
composition, conditional statements and while-loops.

Intuitively, a disjoint parallel program of the form S = [Si]|...|Sx] termi-
nates if and only if all of its components Si, ..., Sn terminate; the final state is
then the composition of the final states of S1,...,5x.

Following Hennessy and Plotkin [1979] we define the semantics of disjoint
parallel programs in terms of transitions. Intuitively, a disjoint parallel program
[S1]|- . .||S»] performs a transition if one of its component performs a transition.
Formally, we expand the transition system for while-programs by the following
rule:

< S;,0> —» <T;)1>
< [Sll---lISill- - |ISn)yo > = < Sill- - ITl- - AISa), 7 >

where1 <1< n.
Recall that computations of disjoint parallel programs are defined as those
of while-programs. For example

<[z:=1ly:=2|z:=3],0 >
< [Elly = 2||z := 3],0(1/z] >
< [E||E||2 := 3},0(1/=](2/4] >
— < [E||E|E),0(1/=](2/4](3/2] >

!

l

is a computation of [z := 1|y := 2||z := 3] starting in 0.

Here E stands for the empty program and its occurrence denotes termina-
tion of the appropriate component. For example, [Elly := 2|z = 3] denotes
a parallel program where the first component has terminated. As explained
above a parallel program terminates if and only if all its components terminate.
Consequently we identify

[E|.. |E] = E.

Thus the final configuration in the above computation is the terminating
configuration

43

< E,o[1/z][2/4}(3/2] > .

We define the partial and total correctness semantics M and Mg of disjoint
parallel programs by putting for a state o

M[[S]l(¢) = {7 |< S,0 > —=* < E,7 >}
where —* denotes the transitive reflexive closure of — , and

Mia[[S])(0) = M([S])(o)
U {1]S can diverge from o}.

Our aim is to prove that for a disjoint parallel program only one outcome for
a given initial state is possible. In other words, for any disjoint parallel program
S and state g, Mo [[S]}(o) has exactly one element. To this end, we need some
results concerning abstract reduction systems.

Definition 1 Let — be a non-empty binary relation. Denote by —* the
transitive reflexive closure of — . — satisfies the diamond property if for all

a,b,c such that b # ¢
/“\\
b c

implies that for some d
b\ /c
d
— is called confluent if for all a,b,c

N

44

implies that for some d

N/

The following lemma due to Newman [1942] is of importance to us.

Lemma 2 (Newman’s Lemma) If a relation — satisfies the diamond prop-
erty then it is confluent.

Proof. Suppose that — satisfies the diamond property. Let —" stand for
the n-fold composition of — . A straightforward proof by induction on n > 0
shows that @ — b and a —" ¢ implies that for some i < n and some d, b—id
and ¢ —°d. Here c —»¢d iff c = d or ¢ = d. Thus a — b and @ —* c implies that
for some d, b —*d and ¢ —"* d.

This implies by induction on = > 0 that if a —* b and @ —™ ¢ then for some
d,b—*d and c —* d. This proves confluence. 0

We shall also need the following lemma.

Lemma 3 Suppose — satisfies the diamond property and that a = b, a — ¢,
b # c. If there exists an infinite sequence a — b — ..., then there exists an
infinite sequencea = c—

Proof. Consider an infinite sequence ag — a3 — ... where ag = @ and a; = b.
Case 1. For some i > 0, c —* a;.

Then @ — ¢ —* a; — ... is the desired sequence.
Case 2. Forno: >0, c—" a;.

By induction on i we construct an infinite sequence cg — ¢; — ... such that
co = c and for all i > 0, a; — ¢;. For i =0, ¢; is already correctly defined.

Consider now the induction step. We have a; — a;4+1 and a; — ¢; for some
i > 0. Also, since ¢ —* ¢;, by the assumption ¢; # ai+,. Again by the diamond
property for some ¢;41, @i+1 — Ci+1 and ¢; = Cit1. D

Define now for an element a in the domain of —

yield(a) = {6|a —*b,bis — -maximal}
U {L| there exists an infinite sequence a = a; — ...}

where b is called — -maximal if for no ¢, b — c.

45

Lemma 4 Suppose that — satisfies the diamond property. Then for every a,
yield(a) has exactly one element.

Proof. Suppose that for some — -maximal b and ¢, a =+*b and a —*¢c. By
Newman’s Lemma for some d, b —*d and ¢ —* d. By the — -maximality of b
and ¢, bothb=dand c=d,ie. b=c.

Thus the set {b]a —"* b,b 18 — -maximal} has at most one element. If it is
empty, then yield(a) = {L} and we are done.

Otherwise it has exactly one element, say 5. Assume by contradiction that
there exists an infinite sequence a — a; — Consider a sequence
bp = by —...— by where by = a and by = b. Then k > 0. Let by — ... — b,
be the longest prefix of by — ... — by which is an initial fragment of an infinite
sequence @ — ¢; — Then £ is well defined, by = ¢, and £ < k, since by is
— -maximal. Thus by — bg+) and by — cg41. By the definition of £, bgt1 # co41.
By Lemma 3 there exists an infinite sequence by — bgy; — This contradicts
the choice of £. Thus yield(a) = {b}. o

We now wish to apply Lemma 4 to the case of disjoint parallel programs.
To this purpose we prove first the following lemma.

Lemma 5 (Diamond Property). Let S be a disjoint parallel program and o
a state. Whenever

< 8,0 >

< N\
< 81,01 >#< 82,02 >,

then for some configuration < T, 7 >

<Sl,0’1> <Sz,0’2>

N
<T,7>.

Proof. By the format of the transition rules, S is of the form [T}]|...||T%] for
some pairwise disjoint while-programs T, ..., T, and there exist while-programs
T/ and T}, with i # j, 1 < 4,5 < n such that

Sy = [0l NTE- - N T),
Sz = [T|l.. .ITF|- - NTw],
<Tio> - <T!,01 >,
<Tj,0 > = <T},02>.

Let
T=[7|.. T

where for k=1,...,nsuch that k £iand k # j
Ty = Tk

If o1 # o then the transition < S,0 > — < 81,01 > consists of executing
an assignment statement and then o, = o[d;/u;] for some variable u; and
element d; of the domain D.

Similarly if o2 # o then o2 = o[da/u2] for some variable u3 and element d3
of the underlying domain over which all variables range. Here o{d/u] stand for
the state differing from o only on the variable u to which it assigns the value d.

We now define 7 depending on the cardinality of the set {7,01,02}:

c if card{c,01,02} =1,

P if card{c,01,02} =2 and
{0101102} = {aa p}r

oldi/u]{d2/u2] if card{o,01,02} =3.

If 7 = o[d, /u1][d2/ua] then < 81,01 > — < T,7 >. But by the disjointness
condition 7 = o[da/u2][d1/u1] which proves that also < S2,02 > — <T,7 >.
Other cases are straightward and left to Jaco. m]

As an immediate corollary we obtain the desired result.
Theorem 6 (Determinism) For every disjoint parallel program and a state

o, Miot[[S]}(o) has exactly one element.
Proof. By Lemma’s 4 and 5. O

References

[1] J.W. de Bakker [1980], Mathematical Theory of Program Correctness,
Prentice-Hall, Englewood Cliffs, N.J., 1980.

[2] M.C.B. Hennessy and G.D. Plotkin [1979], Full abstraction for a simple
programming language, in: Proceedings of the 8th Symposium on Math-
ematical Foundations of Computer Science, Lecture Notes in Computer
Science 74 (J.Beévar, ed.), pp.108-120, 1979.

[3] C. A. R. Hoare [1972], Towards a theory of parallel programming, in:
Operating Systems Techniques (C.A.R. Hoare, R.H. Perrot, eds.), pp.
61-71, Academic Press, 1972.

[4] M.H.A. Newman [1942], On theories with a combinatorial definition of
“equivalence”, Ann. Math, {3, pp. 223-243, 1942.

