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Abstract: We prove determinism of disjoint parallel programs by applying
simple results on abstract reduction systems.

In this note we consider disjoint parallel programs as defined in Hoare [1972].
We assume from the reader the knowledge of while-programs (see e.g. De
Bakker [1980]) and their semantics defined by means of transitions (see Hennessy
and Plotkin [1979]). Two while-programs S; and S, are called disjoint if none
of them can change the variables accessed by the other one, i.e. if

change(S)) Nvar(Sz) = var(S1) N change(Ss2) = 9,

where change(S) is the set of variables of S which can be modified by it, i.e. to
which a value is assigned within § by means of an assignment. Note that disjoint
programs are allowed to read the same variables. For example, the programs

z:=zandy:=2z2

are disjoint because change(z := z) = {z}, var(y := z) = {y, 2} and var(z :=
2) = {z,z},change(y := 2) = {y}.
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On the other hand the programs z := z and y := z are not disjoint because
z € change(z := z) Nvar(y := ).

Disjoint parallel programs are generated by the same clauses as those defining
while-programs together with the following clause for parallel composition:

S = [S1].../|Sn]

where for n > 1, 81,..., 5, are pairwise disjoint while-programs. Thus we do
not allow nested parallelism, but we allow parallelism to occur within sequential
composition, conditional statements and while-loops.

Intuitively, a disjoint parallel program of the form S = [Si]|...|Sx] termi-
nates if and only if all of its components Si, ..., Sn terminate; the final state is
then the composition of the final states of S1,...,5x.

Following Hennessy and Plotkin [1979] we define the semantics of disjoint
parallel programs in terms of transitions. Intuitively, a disjoint parallel program
[S1]|- . .||S»] performs a transition if one of its component performs a transition.
Formally, we expand the transition system for while-programs by the following
rule:

< S;,0> —» <T;)1>
< [Sll---lISill- - |ISn)yo > = < Sill- - ITl- - AISa), 7 >

where1 <1< n.
Recall that computations of disjoint parallel programs are defined as those
of while-programs. For example

<[z:=1ly:=2|z:=3],0 >
< [Elly = 2||z := 3],0(1/z] >
< [E||E||2 := 3},0(1/=](2/4] >
— < [E||E|E),0(1/=](2/4](3/2] >

!

l

is a computation of [z := 1|y := 2||z := 3] starting in 0.

Here E stands for the empty program and its occurrence denotes termina-
tion of the appropriate component. For example, [Elly := 2|z = 3] denotes
a parallel program where the first component has terminated. As explained
above a parallel program terminates if and only if all its components terminate.
Consequently we identify

[E|.. |E] = E.

Thus the final configuration in the above computation is the terminating
configuration
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< E,o[1/z][2/4}(3/2] > .

We define the partial and total correctness semantics M and Mg of disjoint
parallel programs by putting for a state o

M[[S]l(¢) = {7 |< S,0 > —=* < E,7 >}
where —* denotes the transitive reflexive closure of — , and

Mia[[S])(0) = M([S])(o)
U {1 ]S can diverge from o}.

Our aim is to prove that for a disjoint parallel program only one outcome for
a given initial state is possible. In other words, for any disjoint parallel program
S and state g, Mo [[S]}(o) has exactly one element. To this end, we need some
results concerning abstract reduction systems.

Definition 1 Let — be a non-empty binary relation. Denote by —* the
transitive reflexive closure of — . — satisfies the diamond property if for all

a,b,c such that b # ¢
/“\\
b c

implies that for some d
b\ /c
d
— is called confluent if for all a,b,c

N
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implies that for some d

N/

The following lemma due to Newman [1942] is of importance to us.

Lemma 2 (Newman’s Lemma) If a relation — satisfies the diamond prop-
erty then it is confluent.

Proof. Suppose that — satisfies the diamond property. Let —" stand for
the n-fold composition of — . A straightforward proof by induction on n > 0
shows that @ — b and a —" ¢ implies that for some i < n and some d, b—id
and ¢ —°d. Here c —»¢d iff c = d or ¢ = d. Thus a — b and @ —* c implies that
for some d, b —*d and ¢ —"* d.

This implies by induction on = > 0 that if a —* b and @ —™ ¢ then for some
d,b—*d and c —* d. This proves confluence. 0

We shall also need the following lemma.

Lemma 3 Suppose — satisfies the diamond property and that a = b, a — ¢,
b # c. If there exists an infinite sequence a — b — ..., then there exists an
infinite sequencea = c— .. ..

Proof. Consider an infinite sequence ag — a3 — ... where ag = @ and a; = b.
Case 1. For some i > 0, c —* a;.

Then @ — ¢ —* a; — ... is the desired sequence.
Case 2. Forno: >0, c—" a;.

By induction on i we construct an infinite sequence cg — ¢; — ... such that
co = c and for all i > 0, a; — ¢;. For i =0, ¢; is already correctly defined.

Consider now the induction step. We have a; — a;4+1 and a; — ¢; for some
i > 0. Also, since ¢ —* ¢;, by the assumption ¢; # ai+,. Again by the diamond
property for some ¢;41, @i+1 — Ci+1 and ¢; = Cit1. D

Define now for an element a in the domain of —

yield(a) = {6|a —*b,bis — -maximal}
U {L| there exists an infinite sequence a = a; — ...}

where b is called — -maximal if for no ¢, b — c.
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Lemma 4 Suppose that — satisfies the diamond property. Then for every a,
yield(a) has exactly one element.

Proof. Suppose that for some — -maximal b and ¢, a =+*b and a —*¢c. By
Newman’s Lemma for some d, b —*d and ¢ —* d. By the — -maximality of b
and ¢, bothb=dand c=d,ie. b=c.

Thus the set {b]a —"* b,b 18 — -maximal} has at most one element. If it is
empty, then yield(a) = {L} and we are done.

Otherwise it has exactly one element, say 5. Assume by contradiction that
there exists an infinite sequence a — a; — .... Consider a sequence
bp = by —...— by where by = a and by = b. Then k > 0. Let by — ... — b,
be the longest prefix of by — ... — by which is an initial fragment of an infinite
sequence @ — ¢; — .... Then £ is well defined, by = ¢, and £ < k, since by is
— -maximal. Thus by — bg+) and by — cg41. By the definition of £, bgt1 # co41.
By Lemma 3 there exists an infinite sequence by — bgy; — .... This contradicts
the choice of £. Thus yield(a) = {b}. o

We now wish to apply Lemma 4 to the case of disjoint parallel programs.
To this purpose we prove first the following lemma.

Lemma 5 (Diamond Property). Let S be a disjoint parallel program and o
a state. Whenever

< 8,0 >

< N\
< 81,01 >#< 82,02 >,

then for some configuration < T, 7 >

<Sl,0’1> <Sz,0’2>

N
<T,7>.

Proof. By the format of the transition rules, S is of the form [T}]|...||T%] for
some pairwise disjoint while-programs T, ..., T, and there exist while-programs
T/ and T}, with i # j, 1 < 4,5 < n such that

Sy = [0l NTE- - N T),
Sz = [T|l.. .ITF|- - NTw],
<Tio> - <T!,01 >,
<Tj,0 > = <T},02>.

Let
T=[7|.. T



where for k=1,...,nsuch that k £iand k # j
Ty = Tk

If o1 # o then the transition < S,0 > — < 81,01 > consists of executing
an assignment statement and then o, = o[d;/u;] for some variable u; and
element d; of the domain D.

Similarly if o2 # o then o2 = o[da/u2] for some variable u3 and element d3
of the underlying domain over which all variables range. Here o{d/u] stand for
the state differing from o only on the variable u to which it assigns the value d.

We now define 7 depending on the cardinality of the set {7,01,02}:

c if card{c,01,02} =1,

P if card{c,01,02} =2 and
{0101102} = {aa p}r

oldi/u]{d2/u2] if card{o,01,02} =3.

If 7 = o[d, /u1][d2/ua] then < 81,01 > — < T,7 >. But by the disjointness
condition 7 = o[da/u2][d1/u1] which proves that also < S2,02 > — <T,7 >.
Other cases are straightward and left to Jaco. m]

As an immediate corollary we obtain the desired result.
Theorem 6 (Determinism) For every disjoint parallel program and a state

o, Miot[[S]}(o) has exactly one element.
Proof. By Lemma’s 4 and 5. O
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